Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37873331

RESUMO

The nematode, Caenorhabditis elegans, is an advantageous model for studying developmental toxicology due to its homology to humans and well-defined developmental stages. Similarly to humans, C. elegans utilize dopamine as a neurotransmitter to regulate motor behavior. We have previously reported behavioral deficits in a genetic model of C. elegans (OK411) that lack the neurotransmitter transporter necessary for packaging dopamine into synaptic vesicles. Anecdotally, we observed these C. elegans appeared to have a smaller body size, which is supported by prior studies that observed a larger body size in C. elegans that lack the enzyme that catalyzes dopamine synthesis, suggesting a complex regulatory system in which dopamine mediates body size in C. elegans. However, the question of whether body size abnormalities apparent in C. elegans with disruptions to their dopamine system are developmental or purely based on body size remains unanswered. Here, we present data characterizing the effect of gene mutations in dopamine-related proteins on body size, development, and behavior. We analyzed C. elegans that lack the ability to sequester dopamine (OK411), that overproduce dopamine (UA57), and a novel strain (MBIA) generated through crossing OK411 and UA57, which lacks the ability to sequester dopamine into vesicles and additionally endogenously overproduces dopamine. This novel strain was generated to address the hypothesis that an endogenous increase in production of dopamine can rescue deficits caused by a lack of vesicular dopamine sequestration. Compared to wild type, OK411 have shorter body lengths and behavioral deficits in early life stages. In contrast, the MBIA strain have similar body lengths to wild-type by early adulthood and display similar behavior to wild-type by early adulthood. Our data suggests that endogenously increasing the production of dopamine is able to mitigate deficits in C. elegans lacking the ability to package dopamine into synaptic vesicles. These results provide evidence that the dopamine system impacts development, growth, and reproduction in C. elegans.

2.
Exposome ; 3(1): osad003, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122372

RESUMO

The health and disease of an individual is mediated by their genetics, a lifetime of environmental exposures, and interactions between the two. Genetic or biological sex, including chromosome composition and hormone expression, may influence both the types and frequency of environmental exposures an individual experiences, as well as the biological responses an individual has to those exposures. Gender identity, which can be associated with social behaviors such as expressions of self, may also mediate the types and frequency of exposures an individual experiences. Recent advances in exposome-level analysis have progressed our understanding of how environmental factors affect health outcomes; however, the relationship between environmental exposures and sex- and gender-specific health remains underexplored. The comprehensive, non-targeted, and unbiased nature of exposomic research provides a unique opportunity to systematically evaluate how environmental exposures interact with biological sex and gender identity to influence health. In this forward-looking narrative review, we provide examples of how biological sex and gender identity influence environmental exposures, discuss how environmental factors may interact with biological processes, and highlight how an intersectional approach to exposomics can provide critical insights for sex- and gender-specific health sciences.

3.
Lab Chip ; 20(2): 266-273, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31788681

RESUMO

Gene expression and genetic regulatory networks in multi-cellular organisms control complex physiological processes ranging from cellular differentiation to development to aging. Traditional methods to investigate gene expression relationships rely on using bulk, pooled-population assays (e.g. RNA-sequencing and RT-PCR) to compare gene expression levels in hypo- or hyper-morphic mutant animals (e.g. gain-of-function or knockout). This approach is limited, especially in complex gene networks, as these genetic mutations may affect the expressions of related genes in unforseen ways. In contrast, we developed a microfluidic-based pipeline to discover gene relationships in a single genetic background. The microfluidic device provides efficient reagent exchange and the ability to track individual animals. By automating a robust microfluidic reagent exchange strategy, we adapted and validated single molecule fluorescent in situ hybridization (smFISH) on-chip and combined this technology with live-imaging of fluorescent transcriptional reporters. Together, this multi-level information enabled us to quantify a gene expression relationship with single-animal resolution. While this microfluidic-based pipeline is optimized for live-imaging and smFISH C. elegans studies, the strategy is highly-adaptable to other biological models as well as combining other live and end-point biological assays, such as behavior-based toxicology screening and immunohistochemistry.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Hibridização in Situ Fluorescente , Dispositivos Lab-On-A-Chip , Fator de Crescimento Transformador beta/genética , Animais , Caenorhabditis elegans , Expressão Gênica , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...